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ON4 THE EXCEEDANCE RANO" MEASURES

FOR STATIONARY PROCESSES

by

M.R. Leadbetter

University of North Carolina

Summary: Two common approaches to extremal theory for stationary processes

involve (a) consideration of point processes of upcrossings of high levels and

(b) use of the total exceedance time above such levels. The approach (a) yields

a greater variety of interesting results regarding the "global" and local

maxima, but requires more by way of regularity conditions on the sample paths,

than does the approach (b).

In this work we combine both approaches by consideration of the "exceedance

random measure" thereby obtaining general results under weak conditions on the

sample functions. These include previously known results in the case where more

sample function regularity is assumed.

Research supported by the Air Force Office of Scientific Research under Contract

No. F49620 85C 0144. 1 Accession For

NNTIS oReI0

e Justification

DiYst ribut ion/~By

~~Dist SLca , ,



* 1. Introduction

Two approaches have been used to obtain theory surrounding the asymptotic

distribution of the maxima

(1.1) M(T) = sup(Et: 0 t T)

of a stationary process {t : t 0). as T -o-o. The first of these involves

upcrossings of high levels, using the simple connection

(M(T) 9 u) C (Nu(T) = 0) C {M(T) 9 u) U {E(O) > u}

if Nu(T) denotes the number of upcrossings of a level u by ft in 0 t g T. It

may be seen from this (cf. [9] and references therein) that the limiting

distribution of M(T) is intimately connected with the asymptotic Poisson

character of point processes of high level upcrossings. This approach must be

modified when the sample functions are so irregular that upcrossings do not form

a point process and this may be done by use of the so called a-upcrossings of

Pickands [10].

The second approach to extremal theory for M(T), employed by Berman (cf.

T
[1]) uses the exceedance time LT(u) = f; l(t>u)dt, and the immediate

equivalence P({(T) 9 u) = P(LT(u) = 0). While the "upcrossing framework"

provides a greater variety of associated results (e.g. concerning k
th largest

local maxima), the use of exceedance times requires very little by way of sample

function regularity.

In this paper we explore a simple extension to the notion of exceedance

time. namely the exceedance times in arbitrary Borel sets, or "exceedance random

measure". This may be defined under the same minimal conditions as LT(u) but

I%I1



2

gives new and more detailed results involving upcrossings when the sample

functions are more regular. In fact in such cases the limiting random measure

represents both the positions of high upcrossing points and the lengths of the

high level exceedances thus initiated.

Specifically it will be convenient to consider the random measure (r.m.) CT

defined for Borel subsets B of (0,1] as the amount of time in TB for which

Et > uT, where {uT: T O) is a given family of constants, viz.

(1.2) T T(B) f 1 dt.

T.B (ft>ur)

For convenience we assume throughout that the underlying probability space is

- complete, and that ft has a.s. continuous sample paths (and hence in particular

is a measurable process). Clearly C ((0.1]) = LT(uT). the previously defined

exceedance time.

Our primary interest concerns distributional limits for the random measure

aTCT as T -* -, (for suitable constants aT) when the levels uT from a "family of

normalizers for the maximum N(T)". in the sense that P({(T) UT) has a non-zero

limit. To obtain non-trivial results, it is clearly necessary to restrict the

long range dependence in the process to some degree. This will be done by an

,A-: assumption "A(uT1 )" of similar type but significantly weaker than strong mixing.

This will be discussed in Section 2. and some basic lemmas proved.

Section 3 contains the main results of the paper-characterizing theI possible random measure limits for a8TT as a class of L6vy Processes of Compound

Poisson form (with general type of multiplicity distribution), and giving

sufficient conditions for convergence.

Section 4 concerns families of levels UT(r ) parametrized by the quantity T

r such that P(M(T) UT) e -  it being shown that convergence of aTCT for one

U -M
ear



3

such level implies its convergence for all such levels. Finally in Section 5 we

interpret the limiting r.m. in terms of high level upcrossings and exceedance

times when the sample functions are more regular, and illustrate the theory by

obtaining explicit results for stationary normal processes.

In some respects our development parallels that for high level exceedances

in discrete time considered in [4]. and we have made some technical

simpliciations which could also have been used in the discrete time case. But

the more essential differences arise from the fact that random measures rather

bY than point processes are considered, with consequent problems of "lack of

tightness". In particular a case specifically excluded from [4] where

*convergence of the so-called "exceedance point process" occurs after

multiplication by normlizing factors tending to zero my be treated using the

present methods.

2. Framework and basic lemmas.

The basic dependence condition to be used throughout is an obvious

continuous time version of a weak mixing condition used in discrete time (e.g.

[4]). Specifically let {UT} be a family of constants and write BT =5. t

f o{ vuT), s v t} where a(-) denotes the genrated a-field. Write also

- spP(AfBI-P(AIP(B): A C BT B C BT sO, e+s T.
ScT,e - Bs' s+eT' "

Then we say that the stationary process f satisfies the condition A(uT) if

(2.1) aT , TT- 0 as T -. w, for some eT=o(T).

The condition A is often applied through the following lenma essentially

given in (11].

O ti"I % I "k
AIM 11111,



4
Lemma 2.1 Let T sup {IaYZ -YIZI: Y,Z B measurable

T O's B s+,T.T
respectively. II. IZI K 1. 9.s 0. 0, +sKT). Then aT,e K PT'e K 4aT,e so that

A(uT) holds iff PT, e - 0 for some eT=O(T). 0

The following result show how the A condition implies approximate

independence of the Laplace transform of CT in appropriately chosen disjoint

intervals. Results of this type have been used in various forms (cf. [7]) and

the present statement corresponds closely to the general discrete time version

by Hsing ([4]). A proof will be given since a slightly more general statement

is given than is covered by a direct transposition of that in [4], and some

%: notational simplification is possible in the continuous time context. A

corresponding result for the maxima will be obtained as a corollary. Here and

.5 throughout m(-) will denote Lebesgue measure. Use will be made at various

A. points of the inequality

k k k
(2.2) I ly i - lxij I K I 1yi - xil 0 K xi. Yi 1.

I 1

Lemma 2.2 Let A(uT) hold and {k) be integers such that

(2.3) kTeT/T -, 0 kTT,eT-

where eT is as in (2.1). Let = T 1 i K kT. be disjoint subintervals

k J
of (0,1) with J(=J(T)) = U J' and {aT} positive constants. Let f be a bounded

non-negative measurable function such that f(x) a > 0 on a non-degenerate
interval I C (0.1] and suppose that Tm(I nj)/(kr9T) - o. Then

kr
(2.4) IT = 8 exp(-aTJrjfdCT) - 11 a exp(-aTfj fdCT) -# 0 as T -* .

1 1



5

Proof: It is sufficient to so thtany convergent. sub~sequence -T TCSjo

(Y)has limit zero. Write

G (=GT) = (i. 1 i kT~: m(J1 ) > TT

H (H)= (i. 1 i k1,: m(Ji) TT

The intervals J I my be open or closed at either endpoint, but for

'V definiteness we shall regard them as semiclosed and write J1=(a1 .131], and for

i C C define I,= (a,. 13-e2T]. I0 = (O~eVTr]. Note that by statlonarity

T1I*) has the same distribution as XT(I) for each I C G.
T( C(b

Let A be an upper bound for f and suppose first that

kTT

V(2.5) 19 exp(-ar I fj~ fd[ T) - I exp(--aT~ffd[ T)I
lEG I

Kkr £{l -exP(-aTACT(Io*)))

This expression tends to zero by taking logs in assumption (a).

It follows in a very similar way that

(2.6) £ exp(-aT 1 '. fI fdC) T £ exp(-i~r I f fdC T -+0

iCG IiEC I

Also by an obvious Induction from Lens, 2.1.

(2.7) 19 exp(-aT~ I f fdC'.) - 11g exp(-YIf fdrT)I 4k.14T8  0'
11iCC iIC i4E T

* ~ ~ .. : .% * % ., %.b.%~ 1-. a,~:.r.~~.' ~gW 1 **~*~*
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and by (2.2)

(2.8) I 115 exp(-aii fdCT ) - U 9 exp(-a j fdCT)ic. CG Vi C

I g (1-exp(-y~ JdC T)) -"0
iC CvJ IT

icc I

exactly as in (2.5). Finally

kT

(2.9) GIT £ exp(-aTfJ fdrT) - if £ exp(-aTf J fdT)l

9 .{l - exp(-aTj f T)}
iCH

which again tends to zero as in (2.5).

It thus follows by combining (2.5)-(2.9) that if (a) holds then -.T 0 as

T- through S.

(b) If (a) does not hold there is a subsequence S' of S such that
' -%',kT

-T exp(-aTACT(I )) -+ c < 1 as T -, through S'.

We have f(x) a > 0 for x C I. Choose T such that OT/kT - TTeT

0. Tm(InJ)/( 6TeT) -co, and write (with [-] denoting integer part)

oT., = [ETm(J In I)/m(J n I)]

Clearly, since kT = O(OT). 1 6T., - OT and eT.,( 2eT)/(TmI(Ji n I)) =

2 eeTO/(Tm(I n J)) -40 uniformly for all J intersecting I. Hence 8T,i (0)

subinfrvals Eij of (Ji n I) may be chosen of length e T/T. and mutually

separated by at least *T/T. giving

9 exp(-aTffdCT) g exp(-a T -T f fdt).,ij E ij

hd I exp( -a7 /ACT(I I)) + doe T

which, using Irolder's Inequality. (noting a/A 1) does not exceed

et
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( ta/Ae T(,O) + o(l) {8 0

since the inside term tends to c < 1 and 61,/k..-T 0 Hence the first term in T

tends to zero. Similarly the second (product) terms does not exceed

9 0T exp(a *T )O) + o(l) which tends to zero as above so that y-* 0 as T 00

%through S' and hence through S. as required.0

Remark: The result still holds if the function f changes with T, i.e. f=fT' for

example. provided each fis bounded above and the same lower bound constant a

applies to all f T (though the interval I can depend on T).

* Lemmua 2.2 is often applied in the following form

Lema23_ettessmtin of Lema 2.2 hold and supse J -(a. PT) where

P3T T P (O a~13tl). Suppose also that i nl (a,13) s * (which guarantees also the

last assumption of Lean 2.2). Then

kTr
£ exp(-a TJa fd[T) - UI £ exp(-aT1 j I fdCT) -# 0 as T

Proof. By Lemmau 2.2 it is sufficient to show that

-rj = I exp(-Yjf, fdCT) - I exp(-Map Jf dfT) -+

as T -*mthrough a sequence S such that -ri has a limit as T -*~through S.

Since 0 'j iiKlexp(.a1T(J,, by a giefamiliar argumnts, where J T ]the

result flosI x(aATJ)) -. 1 as T -*mthrough S. Otherwise there is

a subsequence S' C S such that as T -,~through S',

(2.10) Z exP(-aTACT(J )) -c < 1



Now since m(I n J) -, m(I n (aP)) > 0. m(J) -0, .T/T -+ 0 it follows that

, m(i l J)/(e T/T + m(J*)) -* and hence we can find in I n . @ T T copiesIX

E 1 . .EoT of J . mutually separated by at least eT/T. Hence

I exp(-aTiJfdfT) £ exp( -a-aT(I n J))
,"e OTe p j

,.. 9 exp(-alaCT()) + 4 -aT.,T

a T/Aexp(-aTACT(J*)) + o(l)

(choosing eT so that eTr.e T -+ 0). But this last expression tends to zero by

(2.10) since OT -+ -. Hence the first term of -t. tends to zero as T -* - through

S'. But -Y+ is dominated by this term and hence itself tends to zero, completing

the proof. n

The following result showing approximate independence of maxima in disjoint

intervals follows simply. In this and throughout. M(E) will denote

sup(Et: t e E) for sets E C (0,T] (so that M((O.T]) = X(T) as previously

defined). Note the slight asymmetry of notation in that M(E) is defined for

subsets of (0.T] whereas CT(B) is defined for subsets B C (0,1]. and thea'..,
-eq',' equivalence T = 0} = {M(T.I) uT} for an interval I C (0.1].

.Lemma 2.4 Let A(UT) hold and {kT be integers satisfying (2.3). Let Ji

kT

liT. lik , be disjoint subintervals of [0.1]. J (=J(T)) = J J" Then

~P{M(T.J) T = i7P(M(T.Ji) ttl} -+ 0 as T -*

1

Proof: Putting f S1 in Lemma 2.2 gives

"r. *.1 
ICA W. ' P er,
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kT

I exp(-aTCT((O.l))) - U I exp(-aTCT(Ji)) -+40.

Now write CT for the d.f. Of CT('1] GT. for that Of Wjd Clearly

constants bT > 0 may be chosen so that

kT

CTb)- CT0 +0 1(C.i (T) -CT (0))b0 as T~.m
1=1

Further choose aT such that kl~exp(-a~fbT) -~0. Then

0 9 exp( -aTCT((O"l])) - =ITo-1 0)

'exp(-afx)dGT(x) GTu 1 ,j - GT(v) + exp(-aruST)

(0-00)

which tends to zero. The same inequality holds for wihC~relcn

A * C,. and thus by (2.2),

kT kT k

U I f e-xp(-aTCT(Jl)) - U PfTj) =011 2(T i(b~QT)-r- (O)) + k~exp(aTbT)

which also tends to zero by choice of aT and bT. The result thus follows by

identifying (C T(B) = 0} with M{(T.B) uT for B = J . Ji.0

The following analog of Lemma 2.3 follows simply.

-Lenmma 2.5 Let the assumptions of Lemma 2.3 hold and J =U J C (a43). 0(cz(13l.

with m(J) -. P-a. Then

kT

P{M((Ta.T3)) uT U P7 {M (T. J) uT~) - 0 as T

Proof: This follows from Leanm 2.3. or may be similarly proved. First note

that the J n ay be replaced by abutting intervals of the same length without

!I
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affecting either term (using stationarity) so that J becomes an interval (a.13T)

3. Convergence of CT

It is straightforward to characterize the class of possible limits in

distribution for aTCT where aT[T is any family of positive constants.

Specifically if aT converges in distribution to a random measure C. then C may

I.' be shown to be stationary, to have no fixed atoms and to have independent

Increments and hence (along the same lines as Lemma 3.1 of [4]) to have Laplace

Transform LC satisfying

(3.1 -lo L f

(3.1) -log Lc(f) = ~,fdx + r fo (1-e-Yf(X))dv(y)dx

.9,.. where a 0 and the (L6vy) measure v on (0,m) satisfies

~(3.2) 

f (1-e~Y)dv~y) 
< 

.

*9,A In fact this result may be strengthened to replace weak convergence of the

random measures aT [T by just weak convergence of the random variables aT T(I)

for one fixed subinterval of (0.1]. Further an elementary proof may be given as

will now be indicated.

Theorem 3.1 Let A(uT) hold for the stationary process {ET}. assumed to have

continuous sample paths and write CT for the exceedance random measure

corresponding to (UT). Suppose that for some non empty subinterval I C (0.1]

and a family {aT)O} of constants, that aTCT(I) converges in distribution to a

r.v. Co Then aTCT 
"  where r is a random 

measure with 
Laplace Trans 

form given

% 

I

Sd

DOW3 
1)

111W III/



5,. Proof: It will be notationally convenient to take I = (0.1). With the notation

of A(uT), choose integers kT - - satisfying (2.3). If COhas Laplace Transform

*l(s) = lexp(-sC0 ) we have Pj(s) = lim 9exp( -sCT(O. 1]) and it follows from Lemma

kT
2.2 with f(x) =_s, and Ji= ((i-l)/kT. i~'T]' that 9 exp(-sf T(Jl)) -*'P(s).

Again by Leimi 2.3 by obvious calculations for any interval I =(a.13] C (0.1] it

*follows that gexp(-syTI) = I nT exp(-sr T(J1))(1+o(1)) where nT [ kTrU3-a)] from

which it is simply shown that

gexp(-srT(I)) -+ 4J(s) asIT as T

In particular if I = (0. 1/k) for a fixed integer k it follows that

0() /k = lim 9exp( -sCT(I)) is a Laplace Tranform so that since

1/k k
40i~) = ((,P(s)) ) . Co is infinitely divisible and hence

(3.3) -log *(s) = as~ + ~w (1-e..SY )du(y)

for some constant a. and measure v on (0.-) satisfying (3.2).

further application of Lema 2.2 shows that If I I r a ijon

semiclosed subintervals of (0.1) (and f(x) = s i on I j, then CT(11d .. TI have

the joint Laplace Transform

*k k rn(I1)
Sexp(- .1siCT(Ii)) -0 aT 4(si)

so that

d

where CIare Independent and -log lexp(-sri) =m(Ii)[as + f(1-e 5y)dv(y)J may

0

thus be recognized as having the distribution of (CdI1)."C(0 where Cis a

random measure with Laplace Transform (3.1) so that CT -4 C (e.g. [6). Theorem
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4.2).

d
Corollary 3.2 If the convergence of aTCT(I) -+ CO in the above statement is

replaced by convergence in distribution of aTCT to a random measure C. then

has Laplace Transform given by (3.1).

Proof: The stationarity of CT may be used to show that C has no fixed atoms and

d
* hence C((O)) = C((I)) = 0 a.s. giving CT((O.I]) -* ((0.I]) so that the theorem

applies.

A random measure C satisfying (3.1) also has the "cluster" representation

cc
(3.4) C(-) = am(-) + f y$ Yx(*)dr (x.Y)x-O y--O

where 6x denotes unit mass at x and 17 is a Poisson Process on (0.1]x(0.w) with

intensity m x v. Thus C has a uniform mass on (0.1] together with a sequence of

point masses yl at points xI where (xi.Yl) are the points of n. In general

there may be infinitely many of the atoms xI in (0.1] (though their total mass

is finite) so that this component is then an atomic random measure which is not

0a point process. However if v is finite the xi do form a point process - indeed

a stationary Poisson Process on (0.1] with intensity parameter v(0.es). In any

case the points xI for which yI>a form a Poisson Process with intensity

parameter v(a.a), for any a0. It is also readily seen that P(C(0.1) = 0) > 0

if and only if a = 0 and v(0,0) ( cc so that if a or v(0,w) = a the interval

(0.1] (and in fact every interval) contains C-mass with probability one.

In the case when a=0 and u(0,=) < . v(.)=v(.)/v(O.w) is a probability

distribution on (0.) with Laplace Transform #(s) = J0 e-SXdT(x). Then from

*, (3.1), writing v(0.w) = v.

,3 ,w n
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(3.5) -log L (f) = v$0I1l - *(f(x))]dx

which shows that is a Compound Poisson Process (with not necessarily integer

valued multiplicities) based on a Poisson Process with rate v. and multiplicity

distribution Y.

As might be anticipated, the case where every interval contains C-mass with

probability one arises when the level uT is low in comparison with the values of

the process i.e. when P{M(T) K UT) is small. Specifically the following result

holds.

Theorem 3.3 Suppose that the conditions of Theorem 3.1 hold and that

P{M(T) K uT --A 0 as T -c. Then a=O and v(O.-) ( e in (3.1).

Proof: If P{M(T) K uT) --AO. lim sup P(M(T) UT) > 0 so that since

d
aTCT(0'1) _+ C0'

P(Co = 0) lim sup P(STrT(O1) = 0)

= lim sup P{M(T) K UT) >0.

But from (3.3). P{(O = 0) = lim £exp(-sro) = 0 if either a > 0 or v(O,) = . so

that a = 0 and v(O.') < -0 both follow, as required. 0

0 It will be convenient to refer to the set of points (if any) in an interval

J, = ((i-l)/kT. i/kT] for which ft > UT as an excurston of ft above uT. An

excursion may consist of disconnected segments within one Ji' and points in

successive intervals at which ft > uT are regarded as belonging to different

excursions. The conditional distributions TT of aTT(JI) given CT(JI">O will be

termed excursion length distributions. It will be seen below that these

distributions (on (0.w)) converge weakly to a probability distribution w on

1111I I II I I I II
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[O.-) under the conditions of Theorem 3.1, though the limit may have mass at

zero. A more definitive result is possible if it is assumed that the

distribution IrT are ttght at zero in the sense that lim lim inf 1rT((O.E)) = 0.

e--10 T-4=

Theorem 3.4 Let the conditions of Theorem 3.1 hold and suppose P{M(T) UT)f

--? 0. Then the representation (3.5) holds, and if P{M(T) K u,). -+ e 0 0 KV 0 < 0

as T -~~through some sequence S. then v v and

w
(3.6) irT -# (1-v/vo))% + (v/u 0 )w

as T -. through S, 60 being unit mass at zero. In particular if P{M(T) K uTJ,

has alimit e-0 as T -*-then (3.6) holds as T -i cc

Proof: By Theorem 3.3 it follows that a = 0 and v(0,0) < 40. giving the

representation (3.5). Writing J I = (0,1/kT1 ] again and r T = TAT. we have by

Lemma 2.2,

9 exp( -sa..CT((O"l])) =£ k exp(-saYlCT(Jl)) + o(1)

0s dvT kT

tP~~ = (I - P{N(rT) > u) f** (1-e SXd(J1+ 0(1).

* so that

'I ~kTP{M(T) K u,J. f (1-e sx)drT(x) -,-log le-sm(O, 1)

V f . (I-e5 y)dr(y)

-V 0

*by (3.5). If P{M(T) uT1, 0. 0 K V 0 as T -

through a sequence S. then Lemma 2.4 shows that kTP{N(r T) > 'UT) VO 0 and

hence



(1-e juTT, x) -. (v/i,0) fo (1-e5 )dw(y) Q2 U).

That is, as T -~wthrough S.

10 e5  vTir(x) -i-(1-v/vu) + (v/vo) J' wy

from which (3.6) follows by the continuity theorem for Laplace Transforms.

Finally by (3.6),

1 = lrn inf lrT(O.w) {(i-v/vo)ao + (v/V0 ))r(O,0) = V/v0

so that v v0 as required.0

Theorem 3.5. Suppose that the conditions of Theorem 3.1 hold and that the

family (UrT) of excursion distributions is tight as zero in the sense defined

above. Assume that P{M(T) K ~ --A 0 as T -4 40. Then the representation (3.5)

-V 
V

holds. P{M(T) 9 uT) -* e' an v -+ Y.

Proof: The representation (3.5) holds by Theorem 3.4. Let S be a sequence

11through which P(M(T) u.1, converges to some limit e-V 0 V 0 . Then from

(3.6) for a > 0,

lim inf uTY[O-6)) 1<0 ([.6)) + 1 - - 0
TES "0 V

But by tightness at zero the left hand side has zero limit as e -4 0. This rules

out the case v 0= and further shows that v 0= Vi. Thus P{N(T) uT1 has the

-Lilimit e as T -+.c through any sequence S for which there is convergence so that

-v 
w

P{M(T) K uT..) -+ eV as T -~c.Hence also (3.6) gives VT -* w as T -4 0. completing

the proof.0

The final result of this section gives sufficient conditions for
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convergence of 8f. The same notation as above will be used -in particular

kI-will be chosen to satisfy (2.3). and rT=/T

Theorem 3.6 Let (uT) be a family of constants such that P{M(T) u.T. - e for

some 0 v < and such that ACuT) holds. Suppose that for some family {aT} of

positive constants, the excursion length distributions r T converge weakly to a

probability distribution v on (0..a). Then aTT-.~ where £is a r.m. with

Laplace Transform satisfying (3.5).

Proof: It follows as in the proof of Theorem 3.4 that

~1* -sxkTsex(-a-irT((O-l1)) = {-P{N(r T) > Y~} f (-x W~T() +o

1 -sx
which converges to exp{-vf0 (l-e )dw(x)} as T -. *since P{M(r T) > u.~. -v/k. by

Lemmsa 2.4 and irT -o w. This shows that a TCT(O-l) converges In distribution so

that the conditions of Theorem 3.1 hold. Since the assumed weak convergence of

TrT clearly ipesits "tgtesat zr"the conditions of Theorem 3.5 thus

hold, so that (3.5) holds with the given viv. 0

4. Families of levels.

Suppose that For each T > 0 there exists U.T(T) such that

(4.1) PQI(T) K uT.(r)) -+ e-

This will be the case (cf. [3)) if there are normalizing functions (not

necessarily linear) v T(X) for the mximim such that P{M(T) vT~(X)} -+ G(X) where

G is a continuous d.f. (For If T > 0, choose x such that G(x) = eT and UT(T)

vT(x)). If A(uT) holds for each T > 0 then it ay be shown (cf. [3)) from Lemmna

2.2 that P{M(T) UTr,(l)) .e-T So that (4.1) still holds if UI . r is replaced

ili 1. .~ 1 ,I hi .b
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by UTT(l). That is UT(T) may be replaced by a new version satisfying (4.1) and

such that

(4.2) UT(OT) =UT(T)

for each ai > 0. For simplicity we assume in what follows that UT(T) satisfies

(4.2) as well as (4.1). The exceedance random measures for the levels UT(T)

will be denoted by C(T.The first result shows that convergence in

distribution of (a normalized version of) (Tr) for some Tr > 0 implies such

convergence for all T > 0.

Theorem 4.1 Suppose A(UT(T)) holds for each T > 0 where levels UT(T) are

defined as above satisfying (4.1) and (4.2). Suppose that for Some T> 0 and

some constants a90O. a 1  covrge in distribution to a randIom mesure (T
87CT

Then

where a T/Tand C )has Laplace Transform given by

-log SEfd T r J(l - *(f(x)))dx

in whic *() eS dv(x) is the Laplace Transform of a distribution in on

(0.c) which Is Independent of r.I Proof: Fix T > 0. choose a > 0 such that &r/r1 < 1 and write I = (Oe). Then

(T) C (T)(T)j.Te d
(1 )r (I T= 0 1f t > U (T))d

aT (TT I/T) (Tell 1 ) IT / l~dt
I /T0 t uTTI /T(rj1



.
S(TI) d (TI) .

aTTI/T TT I /T T TiI

Hence the convergence of (T)(T) to a r.m. fC T ) with the desired Laplace

Transform follows from Theorem 3.1. The fact that v does not depend on T

follows since with the above notation,
.. ": exI)( T) (T) (I , (s(T 1) T1 )

i = ~~~~exI)(-TlC m I)C1-T))

V.= exp(-Tm(I)(1 - *(s)))

so that *(s) (and hence r) is the same for all values of T. [3

If T < r2 , UT(72) will typically be less than uT('rl) (and indeed may be

(Ti) (T2)

assumed so if desired) giving CT (B) C CT (B) for Borel subsets B of (0.1],

(TI) (T2) (TI)
so that CT is a "thinned version" of CT Thus one expects C to be a

(T2)
thinned version of C While the thinning process may be complicated it is

'.p.,

*: readily seen that the probability that an event in C is totally eliminated

in with probability 1-T /T2 and, if not eliminated, retains the same
(T)

marginal multiplicity distribution (w) as for C 2. A detailed discussion of

these and "multilevel" cases is planned for [5].

5. "Regular" sample functions and stationary normal processes.

Suppose now that it Is stationary with continuous sample functions and that

the mean number ;p(u) of upcrossings (cf. [9, Chapter 7]) of u per unit time is

,9 finite for each u. Suppose also that A(uT) holds where (UT) is a family of

levels such that TI(UT) -+ v. Then it may be shown under natural further

conditions (cf. the Condition C' of [9] Section 13.2) that P{N(T) u u) - e.

ip-w
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(In the following it will be simply assumed that this limit holds.) Write NT

for the point process of upcrossings of uT. defined on the unit interval by

writing NT(B) to be the number of upcrossings of uT by ft for t E T.B, for each

Borel subset of (0.1]. The following result is then readily proved.

Theorem 5.1 Suppose that ft satisfies the above general conditions and
. d

P{M(T) uT) -* e-. where Tw(uT) -# v. Then T -+ N. a Poisson Process on (0.1]

with intensity v.

Proof: This follows simply by standard arguments from a theorem of Kallenberg

([6]. Theorem 4.7). 0

This result and Theorem 3.5 suggest that one may regard the upcrossings
4%4

N asymptotically as forming the underlying Poisson Process in the Compound Poisson

limit for the normalized exceedance r.m. aT[T . A further natural question is

whether the excursion length distribution TT as defined prior to Theorem 3.4 is

4%-" equivalent to the distribution of time from an upcrossing to the next

downcrossing. after normalization. The affirmative answer to this question

stated below is obtained from Prop. 4.5 of [8]. Specifically we write VT for

the conditional distribution of the time to the first downcrossing of uT after
di

4 t = 0. given an upcrossing occurred at t = 0 (in the Palm or "horizontal window"

sense). vT my be evaluated by

,VT(x) =

where px (u) is the mean number of upcrossing of u per unit time such that the

next downcrossing occurs within a further time x.

* If A(uT) holds write vj for the conditional distribution of rT(J'l) given

T(J) 0 and J = (Okl ] with kT satisfying (2.3). (Thus i.'(x) Is the(OTk.1 T ~ jx
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non-normalized excursion length distribution and rT(X) = vj(aTx). Proposition

4.5 of (8] then gives.j.

Theorem 5.2 Let A(uT) hold where Tp(uT) -+ v and P{M(T) uT) -+ e- v for some

v 0. and VrT. wY be defined as above. Then wT(x) - Tj(x) -* 0 uniformly in x as

T -. 0

It thus follows from this result that T(aT x) may be used to replace wT(x)

to give the multiplicity distribution ir in the Compound Poisson limit (e.g.

Theorem 3.6).

In these results we see that the underlying Poisson event for the limiting

Compound Poisson process for aT T may be identified with high level upcrossings

and the event multiplicities with lengths of excursions above the level

following upcrossings. A closer identification may be obtained by showing that

the point process of upcrossings "marked" with the immediately following

excursion lengths, has the same compound Poisson limit as does the exceedance

r.m.. but the details of this will not be pursed here.

As a specific case consider a stationary noral process ft with zero mean,

unit variance and covariance function r(T) which is twice differentiable at

T = 0. -r"(O) = 1. Then Rice's Formula gives the upcrossing intensity P(u) =

(2w)leu/2 It is known ((2]. Section 12.5) that if OT-((UT)) P{(E(O) > UY}

where Tp(pL) -. v (hence 0T - (v/log T) / 2 ) then

2
WT(OTx) -, 1 - exp(-(u/4)x as T -*-

A convenient non-degenerate limit for TT is thus obtained by taking

-vu/ (ogT 1 / 2  tht -1 i.~ 2 t4
aT-A/T ~ (log T) so that YT(a.lx) -+ 1-e - x 2 '. The condition A(uT)

certainly holds under reasonable conditions (e.g. strong mixing and It seemsN N 'N'



21

likely to hold even under the weaker condition r(t)logt -4 0 as t - w, though we

have not attempted to verify this). Hence for such processes the limiting

Compound Poisson Process for aTrT has underlying Poisson intensity v = lim

TpCuT) and multiplicity distribution function 1-e-x2/4 .

Finally we note that similar results will apply under appropriately

modified mixing conditions to other functionals ass9ciated with high level

exceedances, or excursions into other "rare sets". Indeed a discussion could be

carried out as a study of a class of random measures on the real line without

reference to a real valued process ft at all. Here we prefer to use the more

specific framework within the context of extremal theory.

* Acknowledgments

This research was initiated during a visit to the Catholic University of

Leuven and it is a pleasure to record my gratitutde to the University and

Professor Jozef Teugels for this hospitality. I am also very grateful to

Professor Tailen Hsing for many stimulating conversations on this and related

subjects.

I 11 r

IIE



~.'~ -- , -- -r - - W, PV , rw V.W leev I~'- RTRIEV xiUM-g -rJ no~.m-~ INV'~ M~X t MWUV V

22

References

[1] Bermn, S.M. (1982). Sojourns and extremes of stationary processes. Ann. Probab.
10. 1-46.

[2] Cram6r. H. and Leadbetter, M.R. (1967). Stationary and related stochastic
processes. Wiley. N.Y.

[3] Hsing, T. (1987). On the extreme order statistics for a stationary sequence.
Preprint, Statistics Department University of Illinois.

[4] Hsing. T., H~isler. J., and Leadbetter. M.R. (1988). On the exceedance point
'A process for a stationary sequence, Prob. Theor. and Rel. Fields.. to appear.

* .[5] Hsing. T.. Leadbetter, M.R. (1988). Multilevel and "complete" convergence
theorems for high level exceedance by stationary processes, in preparation.

[6] Kallenberg. 0. (1976). Random Measures. Academic Press. N.Y.

[7] Leadbetter, M.R. (1983). Extremes arnd local dependence in stationary sequences,
Z. Wahrsch. very. Gebiete 65. 291-306.

[8] Leadbet ter. N. R. and Nandagopalan. S.. On exceedance random measures for
stationary processes with "regular" sample paths, in preparation.

[9] Leadbetter, M.R.. Lindgren, C. and Rootz6n. H. (1983). Extremes and related
properties of random sequences and processes. Springer Series in Statistics.

[10] Pickands. J. 111 (1969). Upcrossing probabilities for stationary Gaussian
processes. Trans. Amer. Math. Soc. 145, 51-73.

[11] Volkonski. A.A. and Rozanov. Yu V. (1958). Some limit theorems for random
functions I. Theor. Prob. Appl. 4. 178-197.



176 F Nerzbach. Point processes in the plane. Feb 87

177 Y. Kasahara, N. Maejima and W Verveat, Log fractional stable processes. March S/

lS C Kallianpur. A C Miamee and H. Niemi. On the prediction theory of two p.u1ornt.
stationary random fields. March 87.

179 R, Brigola. Remark on the multiple Wiener integral. Mar. 87.

ISO. R Brigola. Stochastic filtering solutions for ill-posed linear problems afid ti"Ir
extension to measurable transformations. Mar. 87.

181 C Samorodnitsky, Maxtma of symmetric stable processes. Mar 87

182. H.L. Hurd. Representation of harmonlzable periodically correlated processes and tih...
covariance. Apr. 87.

183 H.L. Hurd. Nonparametric time series analysis for perIodically correlated processc
Apr. 87.

19', T. Mor and H Oodaira. Freidlin-Wentzell estimates and the law of the iterated
logarithm for a class of stochastic processes related to symmetric statistics, Way
87.

185 R.F. Serfozo, Point processes, May 87. Operations Research Handbook on Stochastic
Processes. to appear.

186 Z0.D Bat. W.Q. Liang and W. Vervat. Strong representation of weak convergence. Jt,c
87.

187 0. Kallenberg. Decoupling identities and predictable transformations in
exchangeability. June. 87.

188. 0. Kallenberg. An elementary approach to the Daniell-Kolmogorov theorem and some
related results. June 87. Math. Nachr.. to appear.

189. G. Samorodnitsky, Extrema of skewed stable processes. June 8.

190. D. Nualart. N. Sanz and N. Zakri. On the relations between increasing functions

associated with two-parameter continuous martingsles, June 87.

191 F. Arram and N. Taqqu. Weak convergence of sums of moving averages in the a-stable
domain of attraction. June 87.

192 M.R. Leadbetter. Harald Crnmsr (1893-198S). July 87. ISI Review. to appear.

193 R. LePage. Predicting transforms of stable noise. July 87.

194 R. LePage and B.M. Schreiber. Strategies based on maximizing expected log. July i7

19'3 J. Rosinski. Series representations of infinitely divisible random vectors and a
generalized shot noise in Banach spaces. July 87.

196 J. Szulga. On hypercontractivity of a-stable random variables. 0<o<2, July 87.

197 1 Kuznezova-Sholpo and S.T. Rachev. Explicit solutions of moment problems 1. July
87.

198 T. Hsing. On the extreme order statistics for a stationary sequence. July 87.

199 T. Hsing. On the characterization of certain point processes. Aug. 87.

200 J.P. Nolan. Continuity of symmetric stable processes. Aug. 87.

201. N Marques and S. Cambanis, Admissible and singular translates of stable processes.
Aug. 87.

202. 0. Kallenberg, One-dimensional uniqueness and convergence results for exchangeable
processes, Aug. 87

203. R.J. Adler. S. Casbaents and C. Samorodnitsky. On stable Markov processes. Sept. 87

204 C Kallianpur and V. Perez-Abreu. Stochastic evolution equations driven by nucleac
space valued martingales. Sept. 87.

205 R.L. Smith, Approximations in extreme value theory, Sept 87.

206 E. Willekens, Estimation of convolution tails. Sept 87.

207 J. Rosinski. On path properties of certain infinitely divisible processes. Sept ,

2t 8 A.H. Korezltoglu. On the computation of nonlinear filters. Sept. 87.

209 J, Bather, Stopping rules and observed significance levels, Sept. 87.

210 ST. Rachev and J.E. Yukich. Convolution metrics and rates of convergence in the

central limit theorem. Sept. 87.

211 T Fujisaki, Normed Bellman equation with degenerate diffusion coefficients and its
applications to differential equations. Oct. 87.

212 G Simons. Y.C. Yao and X. Wu. Sequential tests for the drift of a Wiener proce"-
with a smooth prior, and the heat equation. Oct. 87

213 R L Smith. Extreme value theory for dependent sequences via the Stein Chen method .t
Poisson approximation. Oct. 87

211 C Houdrk. A note on vector bimeasures, Nov 87.

21', M R leadbetter. On the exceedance random measures for stationary processes. No ,..

,...,- "'

.e ,a.I% I



..

"ONO

DTI

v~. 01


